If it's not what You are looking for type in the equation solver your own equation and let us solve it.
135-15x^2=0
a = -15; b = 0; c = +135;
Δ = b2-4ac
Δ = 02-4·(-15)·135
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90}{2*-15}=\frac{-90}{-30} =+3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90}{2*-15}=\frac{90}{-30} =-3 $
| 9x-5+9x=3x+55-5x | | 135-15x^2+0x=0 | | 23-b=4b-7 | | x^2+55-2x=90 | | -3/8a=19 | | -7(-4y+1)-6y=4(y-4)-7 | | 2(y-2)=2y+2-2(-9y-2) | | 8x+8+5x+2+#X+5+4X+15+5x+10=360 | | 27-3w=4 | | 8x+4x-2x=10x | | x^+7x+6=14 | | 13x^2-260x=0 | | -2u+34=2(u-1) | | x+4x-8=216 | | 4(n+2)−2n=0 | | 2x-6=3+1-x-7 | | 33=-9-7n | | x=4x-8=216 | | 2(x-4)-6=-2(-8x+6)-4x | | 22+.12x=14+.16x | | 9=-7u+4(u+6) | | 5(w+2)=7w+28 | | 2x+32=7x-3 | | 22=-2(-9+k) | | 5(3j-4)=10 | | {2x+13}{3}=3x+2 | | 17x=91-4x | | 4(y-6)-6y=-14 | | 29=19+b | | 3x+50=149 | | B=9/7(j-74) | | k=39+0.008/0.026 |